Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.556
Filtrar
1.
Free Radic Biol Med ; 216: 33-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479632

RESUMO

NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Zimosan/farmacologia , Granulócitos , NADPH Oxidases/genética , Isoformas de Proteínas , Ionóforos/farmacologia , Fosfolipases A2 , Obesidade/complicações , Espécies Reativas de Oxigênio/farmacologia
2.
Sci Adv ; 10(12): eadl4018, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517966

RESUMO

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.


Assuntos
Cobre , Leucemia Mieloide Aguda , Humanos , Cobre/metabolismo , Fatores de Processamento de RNA/genética , Mutação , Leucemia Mieloide Aguda/genética , Ionóforos/farmacologia , Fosfoproteínas/metabolismo
3.
mBio ; 15(2): e0315523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38214510

RESUMO

Ionophores are antibacterial compounds that affect bacterial growth by changing intracellular concentrations of the essential cations, sodium and potassium. They are extensively used in animal husbandry to increase productivity and reduce infectious diseases, but our understanding of the potential for and effects of resistance development to ionophores is poorly known. Thus, given their widespread global usage, it is important to determine the potential negative consequences of ionophore use on human and animal health. In this study, we demonstrate that exposure to the ionophore monensin can select for resistant mutants in the human and animal pathogen Staphylococcus aureus, with a majority of the resistant mutants showing increased growth rates in vitro and/or in mice. Whole-genome sequencing and proteomic analysis of the resistant mutants show that the resistance phenotype is associated with de-repression of de novo purine synthesis, which could be achieved through mutations in different transcriptional regulators including mutations in the gene purR, the repressor of the purine de novo synthesis pathway. This study shows that mutants with reduced susceptibility to the ionophore monensin can be readily selected and highlights an unexplored link between ionophore resistance, purine metabolism, and fitness in pathogenic bacteria.IMPORTANCEThis study demonstrates a novel link between ionophore resistance, purine metabolism, and virulence/fitness in the key human and animal pathogen Staphylococcus aureus. The results show that mutants with reduced susceptibility to the commonly used ionophore monensin can be readily selected and that the reduced susceptibility observed is associated with an increased expression of the de novo purine synthesis pathway. This study increases our understanding of the impact of the use of animal feed additives on both human and veterinary medicine.


Assuntos
Monensin , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Monensin/farmacologia , Virulência , Staphylococcus aureus , Proteômica , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ionóforos/farmacologia , Ionóforos/metabolismo , Purinas
4.
Sci Rep ; 14(1): 1802, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245618

RESUMO

Artemisinin combination therapy remains effective for the treatment of falciparum malaria. However, Plasmodium falciparum can escape the effects of artemisinin by arresting their growth. The growth-arrested parasites cannot be distinguished from nonviable parasites with standard microscopy techniques due to their morphological similarities. Here, we demonstrated the efficacy of a new laboratory assay that is compatible with the artemisinin susceptibility test. As a result of the differential cell permeabilities of two DNA-binding fluorophores, growth-arrested P. falciparum can be distinguished from parasites killed by artemisinin, since the latter lose cell membrane permeability. This fluorescence-based assay increased the sensitivity and specificity of the ring survival assay in the assessment of artemisinin susceptibility. When combined with a third fluorophore-conjugated anti-human leukocyte antibody, this trio fluorophore assay became more useful in identifying growth-arrested parasites in mock human blood samples. This novel assay is a simple and rapid technique for monitoring artemisinin resistance with greater sensitivity and accuracy compared with morphology-based observations under a light microscope.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Ionóforos/farmacologia , Resistência a Medicamentos
5.
PLoS One ; 18(12): e0294297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38079440

RESUMO

A new form of cell death has recently been proposed involving copper-induced cell death, termed cuproptosis. This new form of cell death has been widely studied in relation to a novel class of copper ionophores, including elesclomol and disulfiram. However, the exact mechanism leading to cell death remains contentious. The oldest and most widely accepted biological mechanism is that the accumulated intracellular copper leads to excessive build-up of reactive oxygen species and that this is what ultimately leads to cell death. Most of this evidence is largely based on studies using N-acetylcysteine (NAC), an antioxidant, to relieve the oxidative stress and prevent cell death. However, here we have demonstrated using inductively coupled mass-spectrometry, that NAC pretreatment significantly reduces intracellular copper uptake triggered by the ionophores, elesclomol and disulfiram, suggesting that reduction in copper uptake, rather than the antioxidant activity of NAC, is responsible for the diminished cell death. We present further data showing that key mediators of reactive oxygen species are not upregulated in response to elesclomol treatment, and further that sensitivity of cancer cell lines to reactive oxygen species does not correlate with sensitivity to these copper ionophores. Our findings are in line with several recent studies proposing the mechanism of cuproptosis is instead via copper mediated aggregation of proteins, resulting in proteotoxic stress leading to cell death. Overall, it is vital to disseminate this key piece of information regarding NAC's activity on copper uptake since new research attributing the effect of NAC on copper ionophore activity to quenching of reactive oxygen species is being published regularly and our studies suggest their conclusions may be misleading.


Assuntos
Acetilcisteína , Cobre , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/química , Cobre/química , Dissulfiram/farmacologia , Morte Celular , Apoptose , Antioxidantes/farmacologia , Ionóforos/farmacologia
6.
Trop Anim Health Prod ; 55(6): 391, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919613

RESUMO

This study aimed to evaluate the effect of increasing levels of red propolis extract (RPE) in the diet of confined sheep on performance and histomorphometric parameters of rumen and intestine and histopathological parameters of liver and kidney. Thirty-five male sheep (17.08 ± 2.36 kg) were used, distributed in a completely randomized design, with five treatments (0, 7, 14, 21, and 28 mL day-1 RPE) and seven replications, submitted to 68 days of experiment. At the end of the experimental period, the animals were euthanized, and samples of rumen, intestine, liver, and kidney were collected to histomorphometry and histopathology analyzes. Higher RPE inclusions (21 and 28 mL day-1) maintained dry matter intake and increased total weight (5.78 x 6.14 and 6.95 kg, respectively) gain up to 20.24%. In the rumen, the inclusion of RPE led to an increase in the thickness of the epithelium and the highest level also increased the thickness of the keratinized portion of this epithelium (21.71 x 32.15 µm). The level of 21 mL day-1 provided larger ruminal papillae (1620.68 x 1641.70 µm) and greater ruminal absorption area (561791.43 x 698288.50 µm2). In intestine 21 and 28 mL-1 of RPE provided greater mucosal thickness (468.54 x 556.20 and 534.64 µm), higher goblet cell index (23.32 x 25.82 and 25.64) and higher hepatic glycogen index (1.47 x 1.64 and 1.62), supporting higher nutrients absortion and glicogenolise and intestinal health, corroborating the weight gain indices. The inclusion of RPE did not cause renal histopathological lesions. Therefore, levels of 21 and 28 mL day-1 of RPE can be used in sheep diets, promoting greater final weight gain, causing positive histomorphological changes in the rumen, intestine and liver, without causing kidney or liver damage.


Assuntos
Própole , Animais , Masculino , Ração Animal/análise , Dieta/veterinária , Digestão , Ionóforos/farmacologia , Extratos Vegetais/farmacologia , Própole/farmacologia , Rúmen , Ovinos , Aumento de Peso
7.
J Med Invest ; 70(3.4): 321-324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940514

RESUMO

OBJECTIVE: The effects of oocyte activation with a Ca ionophore and roscovitine (Ca+R), a selective inhibitor of M-phase promoting factor, on unfertilized oocytes after intracytoplasmic sperm injection (ICSI) or testicular sperm extraction (TESE)-ICSI were evaluated. METHOD: Oocytes without pronuclei at 18 hours after ICSI were judged to be unfertilized and were exposed to the Ca ionophore A23187 (5 ?M) with or without roscovitine (50 ?M). The activation rate was measured 3, 7, and 18 hours later. Oocytes with two polar bodies and two pronuclei with a sperm tail were judged to have been activated. RESULTS: At 18 hours, the activation rates in the control, Ca ionophore, and Ca+R groups were 3.5% (4/112), 26.9% (7/26), and 32.1% (17/53), respectively. The activation rate of the Ca+R group was significantly higher than that of the control and similar to that of the Ca ionophore group. Among the oocytes that remained unfertilized after TESE-ICSI, the activation rates of the Ca ionophore and Ca+R groups were 22.2% (2/9) and 43.8% (7/16), respectively. CONCLUSIONS: Sequential treatment with an Ca ionophore and roscovitine activates oocytes that remain unfertilized after ICSI. In TESE-ICSI, the activation rate tended to be increased by the co-administration of roscovitine with a Ca ionophore. J. Med. Invest. 70 : 321-324, August, 2023.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Humanos , Masculino , Ionóforos/farmacologia , Roscovitina/farmacologia , Oócitos/fisiologia
8.
J Biol Chem ; 299(11): 105286, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742925

RESUMO

The twin arginine translocation (Tat) pathway transports folded protein across the cytoplasmic membrane in bacteria, archaea, and across the thylakoid membrane in plants as well as the inner membrane in some mitochondria. In plant chloroplasts, the Tat pathway utilizes the protonmotive force (PMF) to drive protein translocation. However, in bacteria, it has been shown that Tat transport depends only on the transmembrane electrical potential (Δψ) component of PMF in vitro. To investigate the comprehensive PMF requirement in Escherichia coli, we have developed the first real-time assay to monitor Tat transport utilizing the NanoLuc Binary Technology in E. coli spheroplasts. This luminescence assay allows for continuous monitoring of Tat transport with high-resolution, making it possible to observe subtle changes in transport in response to different treatments. By applying the NanoLuc assay, we report that, under acidic conditions (pH = 6.3), ΔpH, in addition to Δψ, contributes energetically to Tat transport in vivo in E. coli spheroplasts. These results provide novel insight into the mechanism of energy utilization by the Tat pathway.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sistema de Translocação de Argininas Geminadas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/fisiologia , Força Próton-Motriz , Medições Luminescentes , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Metabolismo Energético , Esferoplastos/efeitos dos fármacos , Esferoplastos/metabolismo , Ionóforos/farmacologia
9.
Curr Microbiol ; 80(8): 273, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414909

RESUMO

The emergence of SARS-CoV-2 and its variants have posed a significant threat to humankind in tackling the viral spread. Furthermore, currently repurposed drugs and frontline antiviral agents have failed to cure severe ongoing infections effectively. This insufficiency has fuelled research for potent and safe therapeutic agents to treat COVID-19. Nonetheless, various vaccine candidates have displayed a differential efficacy and need for repetitive dosing. The FDA-approved polyether ionophore veterinary antibiotic for treating coccidiosis has been repurposed for treating SARS-CoV-2 infection (as shown by both in vitro and in vivo studies) and other deadly human viruses. Based on selectivity index values, ionophores display therapeutic effects at sub-nanomolar concentrations and exhibit selective killing ability. They act on different viral targets (structural and non-structural proteins), host-cell components leading to SARS-CoV-2 inhibition, and their activity is further enhanced by Zn2+ supplementation. This review summarizes the anti-SARS-CoV-2 potential and molecular viral targets of selective ionophores like monensin, salinomycin, maduramicin, CP-80,219, nanchangmycin, narasin, X-206 and valinomycin. Ionophore combinations with Zn2+ are a new therapeutic strategy that warrants further investigation for possible human benefits.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Reposicionamento de Medicamentos , Monensin/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
10.
Angew Chem Int Ed Engl ; 62(38): e202309080, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37497854

RESUMO

Transmission of chemical information between cells and across lipid bilayer membranes is of profound significance in many biological processes. The design of synthetic signalling systems is a critical step towards preparing artificial cells with collective behaviour. Here, we report the first example of a synthetic inter-vesicle signalling system, in which diffusible chemical signals trigger transmembrane ion transport in a manner reminiscent of signalling pathways in biology. The system is derived from novel ortho-nitrobenzyl and BODIPY photo-caged ZnII transporters, in which cation transport is triggered by photo-decaging with UV or red light, respectively. This decaging reaction can be used to trigger the release of the cationophores from a small population of sender vesicles. This in turn triggers the transport of ions across the membrane of a larger population of receiver vesicles, but not across the sender vesicle membrane, leading to overall inter-vesicle signal transduction and amplification.


Assuntos
Bicamadas Lipídicas , Zinco , Ionóforos/farmacologia , Ionóforos/metabolismo , Transporte Biológico , Bicamadas Lipídicas/metabolismo , Transdução de Sinais
11.
Microbiol Spectr ; 11(4): e0062523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37289074

RESUMO

Polyether ionophores are complex natural products known to transport various cations across biological membranes. While several members of this family are used in agriculture (e.g., as anti-coccidiostats) and have potent antibacterial activity, they are not currently being pursued as antibiotics for human use. Polyether ionophores are typically grouped as having similar functions, despite the fact that they significantly differ in structure; for this reason, how their structure and activity are related remains unclear. To determine whether certain members of the family constitute particularly interesting springboards for in-depth investigations and future synthetic optimization, we conducted a systematic comparative study of eight different polyether ionophores for their potential as antibiotics. This includes clinical isolates from bloodstream infections and studies of the compounds' effects on bacterial biofilms and persister cells. We uncover distinct differences within the compound class and identify the compounds lasalocid, calcimycin, and nanchangmycin as having particularly interesting activity profiles for further development. IMPORTANCE Polyether ionophores are complex natural products used in agriculture as anti-coccidiostats in poultry and as growth promoters in cattle, although their precise mechanism is not understood. They are widely regarded as antimicrobials against Gram-positive bacteria and protozoa, but fear of toxicity has so far prevented their use in humans. We show that ionophores generally have very different effects on Staphylococcus aureus, both in standard assays and in more complex systems such as bacterial biofilms and persister cell populations. This will allow us to focus on the most interesting compounds for future in-depth investigations and synthetic optimizations.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Animais , Bovinos , Ionóforos/farmacologia , Ionóforos/química , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Biofilmes , Testes de Sensibilidade Microbiana
12.
J Antimicrob Chemother ; 78(9): 2121-2130, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37294561

RESUMO

In recent years, publications and debate have emerged in the scientific literature that have linked the use of ionophore coccidiostats, which are themselves not medically important and not related to any therapeutic antibiotics used in human and animal medicine, to resistance development to medically important antibiotics in Enterococcus faecium and Enterococcus faecalis, isolated from broilers and broiler meat. This has been based on the discovery of genes, now named NarAB, that appear to result in elevated MICs of the ionophores narasin, salinomycin and maduramycin and that these are linked to genes responsible for resistance to antibiotics that may be clinically relevant in human medicine. This article will seek to review the most significant publications in this regard and will also examine national antimicrobial resistance surveillance programmes in Norway, Sweden, Denmark and the Netherlands, in order to further evaluate this concern. The conclusion of the review is that the risk that enterococci may pass from broilers to humans and that antimicrobial resistance gene transfer may occur is negligible, remains unquantified and is highly unlikely to be of significance to human health. Indeed, to date no human nosocomial infections have been linked to poultry sources. Concurrently a review of the possible impact of a policy that limits access for poultry farmers and poultry veterinarians to ionophore coccidiostats in broilers indicates predictable negative consequences with regard to antibiotic resistance of significance to animal welfare and to human health.


Assuntos
Coccidiostáticos , Enterococcus faecium , Animais , Humanos , Galinhas , Enterococcus faecalis , Ionóforos/farmacologia , Antibacterianos/farmacologia , Aves Domésticas , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
13.
J Assist Reprod Genet ; 40(7): 1661-1668, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37247099

RESUMO

PURPOSE: Despite the success of ICSI in treating severe male factor infertile patients, total fertilization failure (FF) still occurs in around 1-3% of ICSI cycles. To overcome FF, the use of calcium ionophores has been proposed to induce oocyte activation and restore fertilization rates. However, assisted oocyte activation (AOA) protocols and ionophores vary between laboratories, and the morphokinetic development underlying AOA remains understudied. METHODS: A prospective single-center cohort study involving 81 in vitro matured metaphase-II oocytes from 66 oocyte donation cycles artificially activated by A23187 (GM508 CultActive, Gynemed) (n=42) or ionomycin (n=39). Parthenogenesis was induced, and morphokinetic parameters (tPNa, tPNf, t2-t8, tSB, and tB) were compared between the 2 study groups and a control group comprising 39 2PN-zygotes from standard ICSI cycles. RESULTS: Ionomycin treatment resulted in higher activation rates compared to A23187 (38.5% vs 23.8%, p=0.15). Importantly, none of the A23187-activated parthenotes formed blastocysts. When evaluating the morphokinetic dynamics between the two ionophores, we found that tPNa and tPNf were significantly delayed in the group treated by A23187 (11.84 vs 5.31, p=0.002 and 50.15 vs 29.69, p=0.005, respectively). t2 was significantly delayed in A23187-activated parthenotes when compared to the double heterologous control embryo group. In contrast, the morphokinetic development of ionomycin-activated parthenotes was comparable to control embryos (p>0.05). CONCLUSION: Our results suggest that A23187 leads to lower oocyte activation rates and profoundly affects morphokinetic timings and preimplantation development in parthenotes. Despite our limited sample size and low parthenote competence, standardization and further optimization of AOA protocols may allow wider use and improved outcomes for FF cycles.


Assuntos
Oócitos , Injeções de Esperma Intracitoplásmicas , Masculino , Animais , Ionomicina/farmacologia , Ionóforos/farmacologia , Calcimicina/farmacologia , Estudos de Coortes , Injeções de Esperma Intracitoplásmicas/métodos
14.
Anticancer Res ; 43(6): 2455-2465, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247906

RESUMO

BACKGROUND/AIM: Primary effusion lymphoma (PEL) is classified as a rare non-Hodgkin's B-cell lymphoma that is caused by Kaposi's sarcoma-associated herpesvirus (KSHV); PEL cells are latently infected with KSHV. PEL is frequently resistant to conventional chemotherapies. Therefore, the development of novel therapeutic agents is urgently required. Nigericin, a H+ and K+ ionophore, possesses unique pharmacological effects. However, the effects of nigericin on PEL cells remain unknown. MATERIALS AND METHODS: We examined the cytotoxic effects of the K+ ionophores, nigericin, nonactin, and valinomycin, on various B-lymphoma cells including PEL. We also evaluated ionophore-induced changes in signaling pathways involved in KSHV-induced oncogenesis. Moreover, the effects of nigericin on mitochondrial membrane potential and viral reactivation in PEL were analyzed. RESULTS: Although the three tested ionophores inhibited the proliferation of several B-lymphoma cell lines, nigericin inhibited the proliferation of PEL cells compared to KSHV-negative cells. In PEL cells, nigericin disrupted the mitochondrial membrane potential and caused the release of cytochrome c, which triggered caspase-9-mediated apoptosis. Nigericin also induced both an increase in phosphorylated p38 MAPK and proteasomal degradation of ß-catenin. Combination treatment of nigericin with the p38 MAPK inhibitor SB203580 potentiated the cytotoxic effects towards PEL cells, compared to either compound alone. Meanwhile, nigericin did not influence viral replication in PEL cells. CONCLUSION: Nigericin induces apoptosis in PEL cells by mitochondrial dysfunction and down-regulation of Wnt/ß-catenin signaling. Thus, nigericin is a novel drug candidate for treating PEL without the risk of de novo KSHV infection.


Assuntos
Antineoplásicos , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Humanos , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/patologia , Nigericina/metabolismo , Nigericina/farmacologia , Nigericina/uso terapêutico , beta Catenina/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Herpesvirus Humano 8/fisiologia , Mitocôndrias , Ionóforos/metabolismo , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Chem Soc Rev ; 52(11): 3927-3945, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37203389

RESUMO

Transition metal dysregulation is associated with a host of pathologies, many of which are therapeutically targeted using chelators and ionophores. Chelators and ionophores are used as therapeutic metal-binding compounds which impart biological effects by sequestering or trafficking endogenous metal ions in an effort to restore homeostasis. Many current therapies take inspiration or derive directly from small molecules and peptides found in plants. This review focuses on plant-derived small molecule and peptide chelators and ionophores that can affect metabolic disease states. Understanding the coordination chemistry, bioavailability, and bioactivity of such molecules provides the tools to further research applications of plant-based chelators and ionophores.


Assuntos
Quelantes , Elementos de Transição , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Ionóforos/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Quelantes/química , Metais , Plantas/metabolismo , Peptídeos
16.
J Antibiot (Tokyo) ; 76(7): 425-429, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37069308

RESUMO

Fluoride is routinely used as a highly effective antibacterial agent that interferes with bacterial metabolism through fundamentally different mechanisms. One of the major bacterial evasion mechanisms against fluoride is the impermeability of cell envelope to the anion that limits its cellular uptake. Therefore, translating such compounds to clinical settings requires novel mechanisms to facilitate the uptake of membrane-impermeant molecules. Published data have indicated antibiotic synergy between fluoride and membrane destabilizing agents that induce strong fluoride toxicity in bacteria via enhancing the permeability of bacterial membranes to fluoride. Here, we report a similar mechanism of antibiotic synergy between fluoride and potassium ion carriers, valinomycin and monensin against Gram-positive bacteria, B. subtilis and S. aureus. Molecular dynamics simulations were performed to understand the effect of potassium on the binding affinity of fluoride to monensin and valinomycin. The trajectory results strongly indicated that the monensin molecules transport fluoride ions across the cell membrane via formation of ion-pair between the monensin-K+ complex and a fluoride. This study provides new insights to design novel compounds to enhance the uptake of small toxic anions via synergistic interactions and thus exert strong antibacterial activity against a wide variety of pathogens.


Assuntos
Antibacterianos , Monensin , Ionóforos/farmacologia , Ionóforos/química , Monensin/farmacologia , Valinomicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fluoretos/farmacologia , Staphylococcus aureus/metabolismo , Potássio/metabolismo
17.
Trop Anim Health Prod ; 55(2): 107, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913161

RESUMO

Monensin sodium is one of the most common ionophores used in livestock feeding; however, ionophores are condemned by organized consumer groups. Bioactive compounds from plants found in the seasonally dry tropical forest have similar mechanisms of action as ionophores. The aim was to investigate the effects of replacing monensin sodium with phytogenic additives on the nutritional efficiency of beef cattle. Five 14-month-old Nellore bulls (average body weight 452.68 ± 42.60 kg) were used in the study. The experiment was designed as a 5 × 5 Latin Square (five treatments and five 22-day experimental periods). Within each period, 15 days were used for adaptation of animals to experimental conditions and 7 days for data collection. Bulls were fed a control diet (without additives), monensin (a diet containing monensin sodium 40% as a synthetic additive), and three diets containing phytogenic additives prepared from Anadenanthera macrocarpa (Benth) Brenan, Mimosa tenuiflora (Willd) Poiret, or Prosopis juliflora (Sw.) DC. Nutritional efficiency was assessed through feed intake, nutrient digestibility, feeding behavior, and hematological parameters. Monensin and phytogenic additives did not influence (P > 0.05) feeding behavior or hematological parameters, but the nutrient intake was highest for bulls supplemented phytogenic additives (P < 0.05). Monensin supplementation did not influence (P > 0.05) feed intake. The phytogenic additives and monensin sodium increased (P < 0.05) the nutrient digestibility. Therefore, the phytogenic additives from P. juliflora, A. macrocarpa, and M. tenuiflora can be recommended to enhance the nutritional efficiency of confined Nellore cattle.


Assuntos
Digestão , Monensin , Bovinos , Animais , Masculino , Monensin/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Ionóforos/farmacologia , Ração Animal/análise , Rúmen , Fenômenos Fisiológicos da Nutrição Animal
18.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675211

RESUMO

For many years, ionophores have been used to control coccidiosis in poultry. However, misuse of ionophores can cause toxicity with significant clinical symptoms. The most critical factors influencing ionophores' toxicity are administration dose, species, and animal age. Although clinical signs of ionophore intoxication are well studied, the toxicity mechanisms of the ionophores at the molecular level still are not fully elucidated. This review summarizes the studies focused on polyether ionophores toxicity mechanisms in animals at the clinical and molecular levels. Studies show that ionophore toxicity mainly affects myocardial and skeletal muscle cells. The molecular mechanism of the toxication could be explained by the inhibition of oxidative phosphorylation via dysregulation of ion concentration. Tiamulin-ionophore interaction and the synergetic effect of tiamulin in ionophore biotransformation are discussed. Furthermore, in recent years ionophores were candidates for reprofiling as antibacterial and anti-cancer drugs. Identifying ionophores' toxicity mechanisms at the cellular level will likely help develop novel therapies in veterinary and human medicine.


Assuntos
Antibacterianos , Coccidiose , Animais , Humanos , Ionóforos/farmacologia , Ionóforos/metabolismo , Antibacterianos/metabolismo , Aves Domésticas/metabolismo
19.
Reprod Biomed Online ; 46(1): 165-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357302

RESUMO

RESEARCH QUESTION: Does sirtuin-1 (SIRT1) have a role in the human spermatozoa capacitation process? DESIGN: Human spermatozoa were incubated for 6 h in a capacitating medium in presence or absence of the specific SIRT1 activator, YK 3-237. Several sperm parameters were determined by flow cytometry: viability, acrosome reaction and mitochondria membrane status. Sperm motility was determined objectively by computer-assisted semen analysis. Sperm capacitation status was evaluated by the extent of protein tyrosine phosphorylation and by the percentage of spermatozoa with the acrosome reacted by a calcium ionophore challenge. RESULTS: SIRT1 was detected in the connecting piece of human spermatozoa where a lysine acetylation pattern was mainly found along the sperm tail. SIRT1 activation accelerates the occurrence of a phenotype associated with human sperm capacitation, with no differences seen in the lysine acetylation pattern. After 1 h of co-incubation of YK 3-237 with human spermatozoa, tyrosine phosphorylation levels were comparable to control levels after 6 h of incubation in capacitating conditions. In addition, the activator improved sperm responsiveness to a Ca2+ ionophore (A23187) challenge determined by an increase in acrosome-reacted spermatozoa (P = 0.025). Importantly, sperm viability and mitochondrial activity-related parameters assessed by flow cytometry were not affected by YK 3-237. CONCLUSION: YK 3-237 induces capacitation-related events in human spermatozoa such an increase of tyrosine phosphorylation levels and acrosome-reacted spermatozoa after the ionophore challenge. Together, these results show that YK 3-237 affects human spermatozoa capacitation-related events by a mechanism independent of protein lysine acetylation but dependent on bicarbonate and calcium.


Assuntos
Lisina , Sirtuína 1 , Humanos , Masculino , Lisina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Reação Acrossômica , Capacitação Espermática/fisiologia , Fosforilação , Ionóforos/metabolismo , Ionóforos/farmacologia , Tirosina/metabolismo
20.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430735

RESUMO

Within the present study we proposed a novel approach for senolysis based on the simultaneous disturbance of the several homeostasis-maintaining systems in senescent cells including intracellular ionic balance, energy production and intracellular utilization of damaged products. Of note, we could not induce senolysis by applying ouabain, amiloride, valinomycin or NH4Cl-compounds that modify each of these systems solely. However, we found that ionophore nigericin can disturb plasma membrane potential, intracellular pH, mitochondrial membrane potential and autophagy at once. By affecting all of the tested homeostasis-maintaining systems, nigericin induced senolytic action towards stromal and epithelial senescent cells of different origins. Moreover, the senolytic effect of nigericin was independent of the senescence-inducing stimuli. We uncovered that K+ efflux caused by nigericin initiated pyroptosis in senescent cells. According to our data, the higher sensitivity of senescent cells compared to the control ones towards nigericin-induced death was partially mediated by the lower intracellular K+ content in senescent cells and by their predisposition towards pyroptosis. Finally, we proposed an interval dosing strategy to minimize the negative effects of nigericin on the control cells and to achieve maximal senolytic effect. Hence, our data suggest ionophore nigericin as a new senotherapeutic compound for testing against age-related diseases.


Assuntos
Senoterapia , Nigericina/farmacologia , Ionóforos/farmacologia , Transporte Biológico , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...